Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst

نویسندگان

  • Xinli Zhu
  • Lance L. Lobban
  • Richard G. Mallinson
  • Daniel E. Resasco
چکیده

The catalytic conversion of anisole (methoxybenzene), a phenolic model compound representing a thermal conversion product of biomass lignin, to gasoline-range molecules has been investigated over a bifunctional Pt/HBeta catalyst at 400 C and atmospheric pressure. The product distribution obtained on the bifunctional catalyst was compared with those obtained on monofunctional catalysts (HBeta and Pt/SiO2). This comparison indicates that the acidic function (HBeta) catalyzes the methyl transfer reaction (transalkylation) from methoxyl to the phenolic ring, yielding phenol, cresols, and xylenols as the major products. The metal function catalyzes demethylation, hydrodeoxygenation, and hydrogenation in sequence, resulting in phenol, benzene, and cyclohexane. On the bifunctional catalyst, both methyl transfer and hydrodeoxygenation are achieved at significantly higher rates than over the monofunctional catalysts, leading to the formation of benzene, toluene, and xylenes with lower hydrogen consumption and a significant reduction in carbon losses, in comparison with the metal function alone. In addition, on the bifunctional Pt/HBeta, the rate of deactivation and coke deposition are moderately reduced. 2011 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic Hydrodeoxygenation of Bio-oil Model Compounds over Pt/HY Catalyst

The hydrodeoxygenation of a model compound of lignin-derived bio-oil, guaiacol, which can be obtained from the pyrolysis of biomass to bio-oil, has attracted considerable research attention because of its huge potential as a substitute for conventional fuels. In this study, platinum-loaded HY zeolites (Pt/HY) with different Si/Al molar ratios were used as catalysts for the hydrodeoxygenation of...

متن کامل

Efficient hydrodeoxygenation of biomass-derived ketones over bifunctional Pt-polyoxometalate catalyst.

Acidic heteropoly salt Cs(2.5)H(0.5)PW(12)O(40) doped with Pt nanoparticles is a highly active and selective catalyst for one-step hydrogenation of methyl isobutyl and diisobutyl ketones to the corresponding alkanes in the gas phase at 100 °C with 97-99% yield via metal-acid bifunctional catalysis.

متن کامل

Bifunctional Molybdenum Polyoxometalates for the Combined Hydrodeoxygenation and Alkylation of Lignin-Derived Model Phenolics.

Reductive catalytic fractionation of biomass has recently emerged as a powerful lignin extraction and depolymerization method to produce monomeric aromatic oxygenates in high yields. Here, bifunctional molybdenum-based polyoxometalates supported on titania (POM/TiO2 ) are shown to promote tandem hydrodeoxygenation (HDO) and alkylation reactions, converting lignin-derived oxygenated aromatics in...

متن کامل

Continuous Catalytic Hydrodeoxygenation of Guaiacol over Pt/SiO2 and Pt/H-MFI-90

Hydrodeoxygenation of guaiacol in the presence of 1-octanol was studied in a fixed-bed reactor under mild conditions (50–250 °C) over platinum particles supported on silica (Pt/SiO2) and a zeolite with framework type MFI at a Si/Al-ratio of 45 (Pt/H-MFI-90). The deoxygenation selectivity strongly depended on the support and the temperature. Both guaiacol and octanol were rapidly deoxygenated in...

متن کامل

Direct hydrodeoxygenation of raw woody biomass into liquid alkanes

Being the only sustainable source of organic carbon, biomass is playing an ever-increasingly important role in our energy landscape. The conversion of renewable lignocellulosic biomass into liquid fuels is particularly attractive but extremely challenging due to the inertness and complexity of lignocellulose. Here we describe the direct hydrodeoxygenation of raw woods into liquid alkanes with m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011